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Rhombohedral twins of the ternary semiconductor TIBiTe2 have been studied and it has been 
found that they were either coherent or non-coherent. By an appropriate approximation of the 
rhombohedral angle by a pair of integers p and q, the rhombohedral twins can be described by the 
coincidence site lattice (CSL) model. Since the best description for reflection twins is to note the 
lattice plane (hkl) acting as a mirror plane, the (hkl) description has been used. It has been 
found that the coherent twins are described by a CSL with low multiplicity Z, and the 
non-coherent ones by a CSL with high multiplicity ~. 

1. I n t r o d u c t i o n  
The coincidence site lattice (CSL) model has been 
proved to be a very useful tool for the study of grain 
boundaries (GBs) in materials. The idea of the CSL 
model was introduced by Friedel [1] in the case of the 
twin relationship of a bicrystal and later its general 
applicability has been discussed [2]. A lot of pub- 
lications have appeared concerning the use of the CSL 
model for the characterization of the bicrystal rotation 
relationship and numerical solutions for the system- 
atic derivation of the CSLs of the cubic and hexagonal 
systems [3 11]. 

The application of the CSL description to the rhom- 
bohedral twinning in T1BiTe2 has particular interest 
as the CSL model has to be adapted to two kinds of 
reflection twin, i.e. the coherent and non-coherent 
ones. In the first kind the mirror plane is a crystallo- 
graphic plane while in the second it is not. The ternary 
semiconductor T1BiT% is a characteristic rhom- 
bohedral material because it is considered "pseudo- 
cubic" as it can be described by a multiple 
rhombohedral  cell having an almost 90 ~ rhombohed- 
ral angle (88~ Therefore the interpretation of its 
almost cubic diffraction patterns is easy and the 
analysis of the observed twins is made by using the 
rhombohedral description without going into the 
complexity of the hexagonal one. 

In the light of the above considerations, the aim of 
the present work is to combine some theoretical re- 
sults with the experimental information, in order to 
classify, according to the CSL model, the rhombo- 
hedral twins in T1BiTe2. 

2. Evolution of the CSL model in 
rhombohedral  symmetry  

A systematic study of the CSLs of the rhombohedral 
system appeared some years ago [12]. In that paper 
the rhombohedral  angle ~ was approximated by two 
integer numbers p, q, according to the relation 

* (x, y) + z means that the greatest common divisor of x, y is z. 

tan2(~/2) = p/q (p,q) + 1" (1) 

The analytical expressions for the CSL multiplicity 
function 52, the CSL rotation matrix elements and the 
angles and the rotation axis indices of the six symmet- 
rically equivalent descriptions of the same CSL were 
constructed in direct and reciprocal space, as a func- 
tion of the rotation axis indices [uvw] and some 
integer parameters. The general CSL rotation matrix 
R is written in the form 

R = (1/Z)[rij]  i , j  = 1,2, 3 (2) 

where 2; and rij are integers without a common di- 
visor. E is the multiplicity of the CSL, i.e. the ratio of 
the volume of the CSL unit cell over the volume of the 
(parent) lattice unit cell. The matrix R expresses a ro- 
tation in the coordinate system of the (parent) lattice. 

In order to describe the reflection twins we usually 
note the mirror plane indices (hkl) .  In the case of 
coherent twins the mirror plane is a low-indexed lat- 
tice plane, which is part of the CSL. In the case of 
non-coherent twins the mirror plane is not a crystallo- 
graphic plane. Therefore the derivation of the CSL 
rotation matrix /~ as a function of the mirror plane 
indices (h k l) becomes essential. The analytical expres- 
sions for the elements of this matrix are 

f l l  = [2@ + (k + 1)(p -- q)]h - J 

r12 = [2@ + (k + 1)(p - q)]k 

f13 = [2@ + (k + 1)(p - q)]l 

f21 = 1-2@ + (h + l)(p - q)]h 

f22 = [2@ + (h + l)(p - q ) ] k - g  

?23 = [2@ + (h + l)(p - q)]l 

f3t = [2qI + (k + h)(p - q)]h 

?32 = [2qI + (k + h)(p  - q)]k 

f33 = [2qI + (k + h)(p  - q ) ] l - J  

(3) 
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where the rhombohedral angle ~ is approximated by 
Equation 1 and if, which is the CSL generating func- 
tion, is given by the relation 

if = q(h2 + k 2 + /2) + ( p _  q)(hk + th + kl) 

(4) 
as an integer function. The preserved character of the 
CSL generating function allows the generation of 
CSLs on the basis of the mirror plane descriptions. By 
considering the symmetrically equivalent descriptions 
of one and the same CSL [12] we may complete 
the study of the CSLs of the rhombohedral system. 
Therefore the generation and the analysis of the 
rhombohedral CSLs can be easily handled com- 
putationally. 

Moreover, the simple form of the matrix elements 
(Equations 3) and of the CSL generating function 
(Equation 4) allows a direct examination of twins with 
low (h k l) indices. For example, if (h k l) = (10 0), then 

if = q (5) 

and 

[ q 0 01 q q 0 ,6, 
q 0 - q  

Therefore since if and the elements of the matrix 
_ff (Equations 5 and 6) do not have any common 
divisor, it is obvious that 12 = q. 

If (h k l) = (1 1 0), it holds that 

if = p + q  

and 

R =  P + - q  2 ) 

(7) 

p + q  0 1 0 0 
2 ( p - q )  - ( p + q )  

(8) 

A possible common factor between the CSL generat- 
ing function if and the elements of the matrix R (Equa- 
tions 7 and 8) is the number 2. Therefore, in this case, 
either Z = p + q or 12 = (p + q)/2. 

In the case where (h k l) = (1 1 1), since p and q are 
eliminated between the matrix elements (Equations 3) 
and the expression giving if(Equation 4), it is obvious 
that the CSLs produced are independent of the values 
of p and q. 

3. Structural considerations for TIBiTe2 
TIBiTe2 has at room temperature an NaCl-type struc- 
ture which has a slight rhombohedral distortion with 
an elongation along the threefold [1 1 1] axis. There is 
also an ordering of successive layers normal to the 
rhombohedral axis in the sequence -T1-Te-Bi-Te-T1-. 
Hockings and White [13] have found that the lattice 
parameter of the primitive cell, which has four atoms, 
is ao = 0.8137nm and the rhombohedral angle is 
cz = 32o18 '. 

The same structure can also be described by a non- 
primitive (or multiple) rhombohedral cell which is the 
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pseudocubic one. The multiple cell has 64 atoms, 
a lattice parameter of ao = t.2988 nm and a rhom- 
bohedral angle ~ = 88 ~ 21' [14]. 

There is a direct relationship between the two cells. 
From the geometry of the lattice the following rela- 
tions are revealed: 

1 1 1 
ap = ~am + ~-bm + ~Cm 

1 1 1 
bp = ~am + ~bm + ~Cm (9) 

1 1 1 
Cp = ~a~, + ~bm + ~Cm 

ap, bp, cp are the parameters of the primitive cell and 
am, bm, Cm the parameters of the corresponding mul- 
tiple one. Keeping the notation of International 
Tables for X-ray crystallography [15], we write 

(am, bm, Cm) = (alp, bp, cp)P 

and consequently 

(ap, b e, %) = (a m, bin, Cm)O 

where 
3 - -1  - 1 ]  

P = - 1 3 -- 1 (10) 
- 1  - 1  3 

and 

[1/2 1/4 1/4 1 
Q = /1/4 1/2 1/4 (11) 

L1/4 1/4 1/2 

Q is the matrix which transforms a vector of the 
primitive cell into a vector of the multiple cell. Let Rp 
be a 180 ~ rotation matrix, expressing a rotation de- 
scribed in the primitive cell reference system. This 
matrix is transformed to the matrix Rm, expressing 
a rotation described in the multiple-cell reference sys- 
tem by the similarity transformation 

R m = QRpP (12) 

Similarly if/~p is the 180 ~ rotation matrix given as 
a function of the plane indices in the primitive-cell 
reference system, then the corresponding matrix iffm 
in the multiple-cell reference system is given by the 
similarity transformation 

R m  = P-ffpQ (13) 

It should be noticed that according to the definition 
of I2, its value remains invariant by the above sim- 
ilarity transformations, since the change in volume is 
the same for the (parent) lattice and for the CSL. 

4. Observed twins in TIBiTe2 
A systematic study by transmission electron micro- 
scopy of the twins in TIBiTe2 has been analytically 
presented in a previous paper [14]. Two kinds of twin 
have been observed which can be easily described by 
the pseudocubic cell. The first is the coherent {1 00}- 
type twin in which the twinning operation is deter- 
mined by the (1 00) mirror plane or by a t80 ~ rotation 
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Figure 1 Three-dimensional schematic diagrams of the observed 
twins in T1BiTe2: (a) coherent {100} type, (b) coherent {110} type 
and (c) non-coherent {100} type. 

axis perpendicular to it (Fig. la) and the coherent 
{1 10}-type twin in which the twinning operation is 
determined by the (1 10) mirror plane or by a 180 ~ 
rotation axis perpendicular to it (Fig. lb). In both 
these cases of coherent twins, the mirror plane de- 
scriptions have simple indices. Moreover the mirror 
planes are crystallographic planes. In the second kind 
of twin, the mirror plane is a high-indexed plane, i.e. 
the (1 0 34). However there is a common plane with 
simple indices, the (1 0 0), which is also the composi- 
tion plane. Consequently this is a non-coherent twin 
(Fig. lc). This is not a "classical" twin, as its reflection 

plane is non-crystauographic and therefore it appears 
with high indices. However, it is a significant defect 
that exists in the material, which has a great influence 
on its transport properties [16]. 

The two kinds of twin are easily identified by elec- 
tron diffraction if their relative orientation to the elec- 
tron beam is easily accessible using a double-tilt 
specimen holder. By putting the composition plane in 
edge-on position the row of spots perpendicular to it is 
unsplit, as in all three cases the composition plane is 
a plane common to both grains (Fig. 2). In the two 
cases of the first kind of twin the splitting of the other 
spots is parallel to the unsplit row as the composition 
plane is also the twin plane, while in the second kind 
the situation is different. As expected, due to the non- 
coherency the splitting is not parallel to the unsplit 
row, but it is easily explained by interpretation of the 
diffraction pattern. Therefore the two diffraction pat- 
terns arising from the two grains are constructed 
independently at their {1 10} section. Their super- 
position then shows an identity with the electron dif- 
fraction pattern taken from both grains (Fig. 3). 
According to their orientaion, only in one grain is the 
threefold [1 1 1] axis perpendicular to the electron 
beam. Consequently, the extra (1 1 1) spots due to the 
ordering belong to one of the twin crystals, and there- 
fore are unsplit in the diffraction pattern. 

5. CSL descriptions of TIBiTe2 twins  
As already stated, the CSL description of a rhom- 
bohedral bicrystal is based on the approximation of 
the rhombohedral  angle by the ratio of two integer 
numbers according to Equation 1. Therefore the 
rhombohedral  angle of the primitive cell of T1BiTe2 
has been approximated by 

tan 2 - -  ~ - -  (14) 
12 

and the rhombohedral angle of the multiple cell by 

( 8 8 7 1 ' )  16 tan 2 - -  -~ - -  (15) 
17 

The results concerning the symmetrically equivalent 
descriptions in both (h k l) and [u v w] indexing of each 

Figure 2 Diffraction patterns of the observed twins in T1BiTe2 when the composition plane is in edge-on position: (a) coherent { 100} type 
(section (001)), (b) coherent {110} type (section (112)) and (c) non-coherent {100} type (section (01-1)). Both grains are simultaneously 
diffracting. The splitting of the spots due to the twin relation is visible. For the coherent types the splitting is parallel to the unsplit row, while 
for the non-coherent type it is not. 
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of the different kinds of twin observed are summarized 
in Tables I, II and III. Tables I and II are concerned 
with the {100}-type and {110}-type coherent twins, 
respectively, while Table III concerns the {100}-type 
non-coherent twin, all in the multiple-cell description. 
For each of the six symmetrically equivalent descrip- 
tions, the rotation angle 0 and the (h k I) and [u v w] 
indices are given. For each description, the (h k l) and 
[u v w] indices are connected by the relations 

u = 2qh + (k + 1 ) ( p -  q) 

v = 2 @  + (h + l ) (p  - q) (16) 

w = 2ql + (h + k ) ( p -  q) 

The necessity to represent all the symmetrically equi- 
valent descriptions by both the plane indices (h k l) and 
the rotation axis indices [u v w] becomes clear from 
the above tables. As can be easily seen in each of the 
symmetrically equivalent descriptions, the simple in- 
dices - when they exist - are found either in the (h k l) 
or in the [u v w] formulation. The results concerning 
the rotation axis indices [u v w] in the primitive cell are 
transformed to the multiple cell by using the matrix Q, 
and the results concerning the plane indices (h k l) in 
the primitive cell are transformed to the multiple cell 
by using the matrix P. 

Figure. 3 (a, b) Theoretically constructed and (c) experimentally 
observed diffraction patterns from the non-coherent {100}-type 
twin when the composition {l 00} plane, common to both grains, is 
in edge-on position. 

6. Discussion and conclusions 
The three types of reflection twin observed in T1BiTe2 
can be divided into two main kinds, the coherent and 
the non-coherent ones. The coherent {100}- and 
{ 110}-type twins comprise a common lattice plane, 
i.e. the mirror plane for the two grains, which also 
coincides with the composition plane. Thus the mir- 
ror-plane description of the pseudocubic cell is of low 

TAB L E I Symmetrically equivalent descriptions in (h k l) and [-u v w] indexing of the { i 00}-type coherent twin (Z = 17) 

No. Primitive cell Multiple cell 

0 (deg) h k l u v w h k l u v w 

1 180 2 1 
2 121.97 1 T 

3 121.97 1 0 

4 88.32 9 9 
5 180 9 13 
6 88.32 9 17 

1 26 9 w 1 0 0 34 i 

0 13 13 22 1 [ 1 17 17 18 

1 13 22 13 1 i 1 17 18 17 
17 1 1 3 1 1 33 0 0 T 
'13 T 1 1 1 17 17 0 1 1 

9 1 3 1 1 33 1 0 T 0 

T A B L E I I Symmetrically equivalent descriptions in (h k l) and [u v w] indexing of the { I 10}-type coherent twin (5~ = 33) 

No. Primitive cell Multiple cell 

0 (deg) h k l u v w h k I u v w 

1 180 3 3 2 17 17 18 1 1 0 33 33 

2 91.74 i 2 T 9 26 9 0 T 0 1 34 1 
3 91.74 2 1 1 26 w 9 1 0 0 34 T i 
4 180 9 9 17 1 1 3 1 1 33 0 0 T 
5 118.02 1 17 17 3 3 3 31 33 33 i 1 1 
6 118.02 17 1 17 3 3 3 33 31 33 1 i 1 
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T A B L E I I I Symmetrically equivalent descriptions in (h k l) and [u v w] indexing of the { 1 00}-type non-coherent twin (2 = 561) 

No. Primitive cell Multiple cell 

0 (deg) h k l u v w h k 1 u v w 

1 180 36 35 69 g w 25 1 0 34 0 i 33 

2 120.06 35 T 34 13 21 12 35 33 33 17 17 16 

3 120.06 1 34 35 2~- 12 13 3~ 33 35 1--7 16 17 

4 177.58 25 25 17 69 69 71 33 33 1 34 34 [ 

5 88.26 2 i 1 2-6 9 9 T 0 0 3-4 1 1 

6 91.69 9 17 9 1 3 1 1 33 1 0 T 0 

indices, The non-coherent { 1 0 0} type has a common 
lattice plane, the composition plane, which is not the 
mirror plane of the twinning. In this case the mirror 
plane has no low indices. 

The twins in T1BiTe/ presented above have been 
described by the CSL model. This was the main pur- 
pose of the present work. The CSL descriptions were 
achieved by an appropriate approximation of ,the 
rhombohedral angle by a pair of integers, p and q, and 
the analysis presented. From Tables I, II and III it is 
concluded that the coherent-type twins are described 
by low E-value CSLs, i.e. Z = 17 and 33, in contrast to 
the non-coherent type which exhibits a very large 
multiplicity, i.e. Z = 561. This behaviour is attributed 
to the fact that in this case the mirror plane is not 
a crystallographic plane. 
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